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Kinetic approach to low-frequency waves in dusty self-gravitating plasmas
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A kinetic model is derived for the propagation of low-frequency waves in a dusty plasma containing very
heavy dust particles, when the self-gravitational interaction due to these grains is included in the analysis.
Analytical expressions for the dispersion function are used to examine the instability and damping of the
modes. The stability regions of low-frequency waves are compared in the kinetic and the analogous hydrody-
namic models, showing that there are only slight differences. However, the kinetic analysis modifies the
growth rates of the Jeans instability and can considerably alter the conditions for the propagation of stable dust
modes.
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I. INTRODUCTION conventional electron-ion plasnia2,13. Recently, a kinetic
model for the propagation of dust-acoustic modes in a dusty
Dust particles immersed in plasma and radiative environplasma was treatefil4,15, where the effect of dust size
ments inevitably become electrically charged. Such mixtureslistributions on the propagation and damping of the low-
of electrons, ions, and charged dust grains distinguish thenfrequency waves was considered.
selves from ordinary plasmas, because charged dust grains The kinetic description of a neutral gravitating medium
are much more than just an additional ionic species. One déads to some new phenomena compared to the fluid model.
the important novel features of dusty plasmas when comin both cases there is instability if the wave number is
pared with the usual multispecies electron-ion plasmas, ismaller than the Jeans wave number. However, the oscilla-
that the dust particles can interact through both electric antdons in these two models are quite different: the fluid model
gravitational forces. When self-gravitational interactions duesupports short-wavelength sound waves and the kinetic one
to the heavier dust component are included, dusty plasmagoes not. The latter results in a strong damping effect for
are subject to a Jeans instability. This results in a significanéhort-wavelength sound perturbatidis,17).
modification of collective modes and in new stability condi-  Since the dust particles of a self-gravitating plasma inter-
tions. act through both electric and gravitational forces, a kinetic
The first and one of the most studied low-frequencymodel for the collective effects will eventually account for
modes in dusty plasmas is the “dust-acoustic way&], the specific features of a plasma and a neutral gravitating
which has been confirmed in recent laboratory experimentmedium. Hence it is physically relevant to investigate low-
[2,3]. On the other hand, when self-gravitational effects arerequency modes in such a complex plasma system in a ki-
included self-consistently, new stable and unstable modificanetic description.
tions of this mode in self-gravitating plasmas are found. In In the present paper we study the peculiarities of the
particular, several authors have discussed new conditions f@ropagation of eigenmodes in self-gravitating plasmas, and
the existence of dust-acoustic waves in self-gravitating plasmore specifically, the growth and damping rates of the insta-
mas[4-9]. For a further discussion of wave processes inbilities of dust-acoustic modes and dust Langmuir modes.
such a medium, in general, we refer to recent bddks11. Besides purely kinetic effects such as Landau damping, there
Most work on low-frequency modes in dusty and self-is another kind of damping mechanism for the dust modes,
gravitating plasmas was based on the hydrodynamic amamely, the charge-fluctuation damping due to variable dust
proach that, generally speaking, breaks down at phase vehargeqg18,19. The first analysis of the charge-fluctuation
locities small compared to the thermal velocities of theproblem in dense self-gravitating plasmas has been given by
particles and is clearly insufficient to describe the thermaRao and Verheedi20], and shows that there are order-of-
influences on different kinds of waves. The most generamagnitude differences between the characteristic times of the
model to study the effects associated with the thermal motiomave processes on the one hand and the charging times on
of particles is the kinetic description, which is based on thehe other. The charging times are short enough and hence
statistical representation of the medium as a system of a larggust grains have sufficient time to achieve an average charge
number of particles. on the collapse timescales. Therefore, when considering a
The most important kinetic effect in plasmas is the colli- low-frequency regime in a self-gravitating plasma, we can
sionless dissipation of wave energy, known as Landau damassume that grains have constant charges, thus omitting for
ing, which is well studied for different types of waves in a simplicity a very weak damping due to charge variations.
The plan of the paper is as follows. In Sec. Il we derive
the general kinetic dispersion relation and consider the un-
*Permanent address: Institute of Radio Astronomy of Nationalstable solutions (Jeans-like perturbations The plasma
Academy of Science of Ukraine, Chervonopraporna 4, Kharkovmodes are analyzed in Sec. lll for various frequency re-
310002, Ukraine. gimes. Finally, brief conclusions are given in Sec. IV.
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Il. KINETIC MODEL OF A DUSTY SELF-GRAVITATING 1
PLASMA ep=1+— > —=l,, (7

Sok a ma

A. Kinetic equation

We consider low-frequency plasma waves in infinite, ho-its analog for a self-gravitating neutral medium
mogeneous, unmagnetized, and collisionless self-gravitating
plasmas, which consist of warm electrdmsth subscripte), eg=1— 4nG
ions (with subscripti), and heavy charged grains of a single k?
sort (with subscriptd). All particle species will be described
by a distribution functiorf,, (with a=e,i,d) in phase space and a coupling factor
that satisfies the ordinary Vlasov equation

> ml, ®)

47G 1

o, Ua K=\ 5oz 2 Gelas )
AR N L el £ | R
where
Here q, and m, denote the particle charges and masses,
respectively E denotes the electric field, angl denotes the _ k-V,fao 3
N . o= | ————ad°v. (10
gravitational potential. w—Kk-v
The self-consistent electric and gravitational fields can be ) ) ] ] ] ]
found from the Poisson equations The dispersion relation for the electrostatic waves in the ki-
netic model of self-gravitating plasmas,
1
Vip=—— Ny, 2 K2
#7 gy 2 e @ e(wK)=ep+ —=0, (11)
e
V2h=A47G ’ 3 thus has the same structure as in a fluid appréath
p=am % Mafla @ We now assume that the plasma particles are described by

a Maxwellian distribution function
where ¢ is the electric potentialG is the gravitational con-

stant, and . Nyo v? 12
W= Xp —— |,
R R,
nazf f,d3v. (4) . I . 12
wheren,q is the equilibrium densityy,= (2kgT,/m,)

is the thermal velocity, and , is the temperature of the
B. Dispersion relation particles of typea. Whenf q is of this form, the integral

We now consider plasma waves. assuming all the extern gver all velocities in Eq(10) can be calculated in rectangular
P ' 9 %oordinateSléx Uy ,U5), Where thev, axis is chosen to lie in

fields and average velocities of the particles to be zero in thﬁ1e direction of. The integrals ovep, anduv, are simple
. y , ,

unperturbedequilibrium) state. Following the standard lin- =~ ™" o2 -
earization procedure we obtain the perturbed distributior/'SiNgJ ~=€XpCv foT)dv=\mv7,, and Eq.(10) becomes

functions

2n,0k (= vyexp—vZ/v2,)
OJ X [i x'vT dvx. (13)
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. . C. Stable and unstable solutions
Here the values with subscript O refer to the zeroth-order

state, whereas first-order terms are indicated by a subscript 1 By analogy with the fluid case, we expect the boundary

and are assumed to vary as ékpf —iwt). between stable and unstable solutions to occuna0. At
Substituting the perturbed distribution functigs) into ~ @=0 the integral(13) is easily evaluated and we find

the Poisson equation®) and (3), we obtain two coupled

equations with respect to the electric and gravitational poten- |- 2N,0 (14)
tials, viz., “r

Substituting Eq.(14) into Egs.(7)—(9) and using Eq(11),
pept ¢\/—6:0, one can obtain the equation that determines the critical wave
® numberk,,, namely,

—cpK\/a-l- ¢ec=0.

1t ) ( T ) Lt o s
2,2 T 2,2 2,2
These involve a plasma dielectric constant kA D Keh3a/  Kerhbg
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Here the characteristic Debye and Jeans lengths are give
through\3 = eokgT,/N400> and A2, =kgT /A7Gn,om?,
respectively. When considering waves in a self-gravitational 0
plasma, it is absolutely meaningless to take gravitational in-
teractions due to ions or electrons into account, which is
indeed never done. Hence we neglect terms proportional tc
Ao and A}, which is equivalent to supposing that
|qql/mg<¢|q;|/m; ,e/m.. Electron and ion contributions are
retained only via a global plasma Debye length, defined
through\ 2= Ap2+A\p2.

The critical wave number may be thus easily determined
as a positive root of the bi-quadratic equatids), which we 05
analyze below in two different regimes typical of low-
frequency waves in dusty self-gravitating plasmas.

For the case ok?\3<1 (the dust-acoustic regimethe 08
critical wave number is determined by the expression

2
2 _de 1 -1

= (16)
v 1+A3NE
y

where vg4,=wpg\p is the dust-acoustic velocitywy,
=(n,09%/eom,)Y? is the plasma frequency, ana,, FIG. 1. Kinetic dispersion relatiof20) (full curve) and fluid
=(47Gn,um,)*?is the Jeans frequency. For cold dust, Eq.dispersion(dotted curvg in the casek?\3>1. Only the unstable
(16) simply reduces to the critical wave numbey for dust-  branch is plotted.
acoustic waves in the fluid description.
In the regime of the dust Langmuir waves, wheh\§  (20) is plotted in Fig. 1 for the dimensionless variables
>1, ke Is given by = wl(wjy— w5y andx=k?/kZ,, along with the dispersion re-
5 5 lation for the fluid model, which correspondsye- —1+x.
2 _Z(wad—wpd) As could be expected, the perturbations indeed grovk, if
e U%d ' 17 <k, although the growth rates generally are quite different
in both plasma models. This result is consistent with the
Pursuing the analogy with the fluid description of wave pro-kinetic analysis of a self-gravitating neutral systgav],
cesses in self-gravitating plasmas, we suspect that all pertugince the Jeans frequency enters the equations as part of the
bations with wave number&<k., will be unstable. To effective Jeans frequency througt§ o= wﬁd—wﬁd-
check this, we seib=i7y, wherey is real and positive and ~ Next we consider the approximate solution of E20) in
substitute this into Eq(13). Using the relation the regime of the dust-acoustic waveg,§3<1), whenk
L —k¢—0. Introducing dimensionless variablegs= wzlwgd
_ - _ N and x=k2/k§r, we can expand the functiorts,(v/—Yy/2X)
dx= 2{\/; b exp(b)[1~erf(b)]}, for small arguments, i.ey/x<<1. Then one can obtain the
(18 simplified dispersion relation ag= —x(1—x)?/#. Figure 2
demonstrates the difference in the growth rates of the dust-

fwxzexp( —x?)

0 X2+ b2

where erfp) denotes the error function, we find that acoustic perturbations in the kinetic and fluid approaches in
the vicinity of k—k.,—O0.
2N40 5 2Ny Thus, although both the fluid and kinetic models are un-
la= b2 [1 - mbaexp(bZ){(1-erf(b,)}]= v2 Fa: stable if k<k., the growth rates are quite different: the
“ “ (19 perturbations in the fluid description grow faster than in the
kinetic one.

whereb,= vy/kv, andF, is short hand for the expression
between square brackets. Combining this with E@$-(9)

and(11), we obtain the general dispersion law as Il. ELECTROSTATIC WAVES IN SELF-GRAVITATING
PLASMAS
Fe | _Fi Fa Fa H lyze the stable modes i If-gravitati
14 n _ ~0. (20 ere we analyze the stable modes in a self-gravitating
k2\5e K2M3; k23, K2\34 plasma wherk>k,,. To evaluate the integratl0) for the

Maxwellian distribution(12), we must compute the integral
To understand modifications of dispersion properties due toverv according to the well-known “Landau bypass rule:
the kinetic description, let us start from the dust Langmuirthe contour of integration in the complexplane bypasses
waves and consider EQR0) in the casd<2)\2D>l. Relation  the pole singularity atv=kov from below. Then one can get
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and
0.2 0.4 0.6 0.8 1 x (b) |z <1

2iz
02/ yd W(z)=14+—=+---. (25

7

0.4 4 The wave frequency and dispersion relatioa( w,k) are

/ then written in terms of real and imaginary paits= wq

/ +iy and e(w,k)=¢,+is;, where we assume thdtg|

d >[y| and|e[>]e;].

-0.6- / We consider the low-frequency case, when the wave fre-

s quency satisfies the inequaliky 1< w<kvt;,kvte and the

e dust particles are involved in the wave processes. Some

08 P qualitatively different solutions are possible, depending on
e the relative magnitude abjy, 34, andk?\3. To discuss

s the low-frequency waves in such plasmas, we introduce a

/ parameter
14

y 2
i 26
FIG. 2. As in Fig. 1, but fok®\2<1. = ’ (26)

2y 2
(l)pd k )\D

2n,
le=— 0[1+i\/;zaW(za)], (21 which measures the influence of self-gravitation in a me-

UTa dium. As can be seen, the boundary between stable and un-
stable solutions occurs in the vicinity df=1, when the
wherez,= w/kvy, is a dimensionless frequency adis  gravitational and electric interaction forces balance. The dis-
the Kramp functior{22] persion relation(23), still assumingw>kv g, is now of the

form
2i (z
W(z)=exp(—2z%)| 1+ \/—_f expx2dx]|. (22)
™o 1 iwyVr [ 1 w?d
o o 1+ 5|1+ —+— |1+ —| |- (1-4)
Note that another function is often used, which is related to k2§ kK(1+0) \vri  vre w
Eq. (22) by Z(2)=iJmzW(z) and is tabulatedi23]. , -
The final dispersion equatiofil) can be written in the Wpg 3kvTg| . @ 1
form X\ I | = WNT (=53
0] 20 UTd K°\pgq
1+i\7z,W(z,) w2
s(0,K)=1+2 ——— " xexp — =0, 27
a kz)\éa % kzv'zl'd
1+ivmz,W(z,) ]
Y NN where a parametef=\3,/\3, measures the influence of the
_ DalJa =0, (23)  electron component on the dust modes. If the dust grains are
1 2 1+|\/;ZQW(ZQ) negatively charged, plasma electrons are absorbed by the
< k2)\§ charged dust and heneg, decreases, implying a decrease

of & to a values<1 or even to5<1. The latter corresponds

which we analyze below in different frequency regimes. to a situation where almqst all plasr_na glecyr.ons have been
The analytic analysis of plasma mode propagation redbsorbed by the dust grains, and }hls simplified model_of a
quires asymptotic expansions of the dispersion functiorflUSty Plasma merely consisting of ions and charged grains is
W(2) for either small or large arguments. We will use the Known and discussed in the literaty@]. The opposite oc-
following approximationg22]: curs in the specific case of p95|t|vely charged grains in an
@ |Z|>1, RezZ}>Im{z}, Im{z}<0, isothermal plasmaT=T,), giving §>1. The general dis-
persion relation27) can be adapted to both cases.
i 1 3 As the imaginary part of Eq27) is small compared to the
W(z)= —| 1+ —+ —+ ... | +exp—2z?) (24) real part, we can easily apply the Taylor expansion of the
Jmz 272 47* dispersion relation aroungl=0, which yields
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3k2\3,| 1+
2 wﬁd(l—A) Dd( NS
_|._
k2\5
and
de, -1
7:_8i(w0) % w=wg
1 . 5
_ e v vre  (1-A)B
2kN3wig(1-A) [ (1-A)(1+8)  vrg
X p( wé) (29
exp — y
sz%d

where the parameteB=\3/\3, is introduced. It follows
immediately that the above mentioned condite® kv 14 is
satisfied only if

kA3 +1<|1—A| (30)
Dd ﬁ '
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FIG. 3. Effect of self-gravitation on Landau damping of the
dust-acoustic wave fo8=20.

netic approach for dust-acoustic waves, and thus E&fs.

and(32) in some sense generalize earlier resi14.
Assuming A<1, we consider the influence of self-

gravitation on the dust-acoustic modes. First of all, we

This means that weakly damped low-frequency modes witishould note that dust-acoustic waves usually are almost non-

frequencies given through E@28) can only exist in the

dispersive in the long-wavelength regim&?§3<1). In-

long-wavelength rangekf\34<|1—Al) and in dusty plas- deed, the phase velocity of long-wavelength disturbances is
mas for which & 8|1—A|. Compared to the conditions for vpp=wpghp . In contrast to that, in a self-gravitating plasma
low-frequency modes in the usual dusty plasmas, both otph=wpd)\D(1—wﬁd/kzvﬁa)l’z, and this mode demonstrates
these inequalities become stricter as self-gravitation is takethe dispersion, which is completely specified by the self-
into account. As for the wavelength of the low-frequencygravitational effects. Furthermore, a peculiarity of the dust-
perturbations, it can be either shorter or larger than thecoustic wave in a self-gravitating plasma is its damping

plasma Debye length.

A. Analog of dust-acoustic modes

In the long-wavelength limit, Whekz)\2D<1, the disper-

[Eq. (32)]. Since the dust species are sufficiently heavy, it is
reasonable to assume that the second term in the curly brack-
ets of EQ.(32) makes the main contribution to the damping
rate, and the latter is almost completely controlled by self-

_gravitation. But this has to be treated with some care, when

sion law (28) corresponds to the analog of the dust-acousticjealing with large values of the paramefrFor very large
mode in dusty self-gravitating plasmas. The resulting fre-g the exponential term in E¢32) is reduced and conse-

guency and damping decrement are given by

wi=k%3 | (1—A)(1—k2)\2D)+% (31
and
y=- \/gkvda( (Z—Z‘I’Jr 2—2’253’2) (1+6)"%2
+(1—A)Zﬁ3’2exp{—wu. (32)

Here the parameteX has been redefined as=w34/k?v3,.
In the absence of self-gravitatiod & 0), Egs.(31) and(32)

quently, the influence of self-gravitation on the damping rate
diminishes. Thus, when studying self-gravitational effects
we have to restrict our analysis to those valuesgofor
which the second term of E§32) prevails. This is equiva-
lent to saying that inside the curly brackets the term in
B%%exp(~pB/2) contributes significantly compared to
wpal wpi+ ©pq0%% wpe. In addition,w,q should exceedbq
but not to a great extent, lest the self-gravitational effects
again become insignificant. With regard to the possible pa-
rameters of self-gravitating plasmas, this leads quite realisti-
cally to assume thgB remains smaller than 50.

Figure 3 illustrates the typical evolution of the wave dec-
rement in such self-gravitational plasmas: the régigkv 4,
for =20 is shown as a function &f. The decrement rate
for a usual dust-acoustic wave in dusty plasmas without self-

simply reduce to the dispersion relations obtained in the kigravitation corresponds to a valig/kv 4, for A=0. As one
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Y1/kVes pected, the perturbations damp strongly when k., +0.
Clearly, a region of strong damping is determined by the
parameters of the plasma, in particular By With an in-
crease ofB, the influence of self-gravitation is reduced and
the curve approaches the usual damping rate for dust-
acoustic waves.

Thus, in contrast to the damping rate of a usual dust-
acoustic wave, for which the damping rate is a linear func-
tion of the wave number, i.e|y|~kvya, the latter can be
modified considerably in a self-gravitating plasma. In par-
ticular, if the valueg is typically no more than 50, there
always exist disturbances with wave numbérs w;q(1
+1/28)/vy4a, Which are subjected to strong attenuation due
to self-gravitational effects. This means that in a medium
with specified values of the dust plasmagg) and Jeans
(w3q) frequencies and € <50, dust-acoustic waves with
k~w;4(1+1/28)/v4, can hardly propagate.

Kik,, Therefore the resemblance of the fluid and the kinetic
model of dust sound waves in dusty self-gravitating plasmas
breaks down at larger wave numbérs k., . Here the fluid

FIG. 4. Landau damping rate vgk,, for the analog of the dispersion equation supports mod.e.s that can simply be re-
dust-acoustic wave in self-gravitating plasmas. garded as undamped gravity-modified dust-acoustic waves.
The kinetic analysis of self-gravitating plasmas is more com-

can see from Fig. 3, the curve demonstrates a considerappiicated. We found that all dust-acoustic perturbations in
growth of the damping effect, and the influence of self-Self-gravitating plasmas with wave numbeks>k., are
gravitation increases especially in the vicinity/of-1. Then ~damped due to the collisionless Landau damping, particu-

0.06

0.05

0.04 1

0.03

0.02 4

0.014

the damping drops to zero fdr=1, whenw?;=k%3,. larly in the vicinity of k—ke+0.
From a physical point of view, the explanation of the _
rather high damping rate foA—1 is quite simple. The B. Dust Langmuir waves

damping rate of a wave is proportional to the difference in  gqy sufficiently short wavelengths, th(?)\%>1 but
numbers of slow and fast captured particles, which is deterkz)\%d<|1_A|’ the spectrum is given by

mined by— (dfdo/dv),,:wo,k. This means that in the case of

a Maxwellian distribution(12) the number of dust particles wi=wi(1-A+3k\3y), (34)
that can effectively interact with the dust-acoustic wave is

given by where the parameteX is defined as\ = wjj/w2y. If A<1

this mode is attenuated, with damping rate
N~(1-A)Y% ! 1-A 33
N( - ) X _z( - )ﬁ . ( ) T Wpg Wpgd  Wpg /o _ap
y=—1\/= — 4+ —=8%2|(1+6)
8 k?’)\SD Wpj  Wpe

When the self-gravitational influence increasés—<1), the (1-4)?

number of resonant dust particlesncreases also, achieving 2 3 3 (1-A)wpg

a maximum atA ,=1—1/8. Hence in the vicinity ofA — 1 +(1-4)2p%exp — 2 K22, . (39

the number of resonant particles becomes so large that the
damping rate grows crucially, far exceeding the LandauEquations(34) and(35) reduce to the dispersion relations for
damping rate for usual dust-acoustic waves. Note also thahe usual Langmuir mode®.g. ion Langmuir waves in an
the picture of absorption of the dust-acoustic waves by rescelectron-ion plasma however, the role of the plasma fre-
nant dust particles refers to the case when B@) is satis-  quency is played by the effective plasma frequency of the
fied. This means that the current considerations are not valigyst particles defined through? off= Waq— w34. The spec-

in the immediate vicinity ofA~Ap, and only provide a tym of plasma waves is quite well knoa2,13 and here
physical idea of the anomalous damping rate due to selfe shall not discuss it further. We just note that disturbances
gravitational effects. of that mode can be subjected to the same strong damping as

The appearance of a large damping rate with increasing gust-acoustic modes in self-gravitating plasmas-¢ 1, i.e.,
may be interpreted in a different way. Pursuing the analog;gl,pd_> w34

with the fluid model, we use the critical Jeans wave number
(16), which can be estimated &§,= w;4/v 42, and consider
the dimensionless damping ratg/w ;4 defined by Eq(32)

as a function ok/k., in the rangek/k;,>1. The correspond- To summarize, the stability of low-frequency waves in
ing dependence is shown in Fig. 4 for differeg®t As ex- homogeneous self-gravitating plasmas in a kinetic descrip-

IV. RESULTS
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tion is closely related to the stability of the analogous hydro-ate differs only slightly from the damping rate for the usual
dynamic model: in both cases there is instability if and onlydust-acoustic waves. In contrast to this, a self-gravitating
if the wave number of the disturbances is less than a criticablasma with & 8<50 shows a considerable growth of the
value. However, the growth rates of the Jeans instability argamping effect, particularly for wave numbers near the criti-
quite different: the perturbations in a fluid description growca| values. This means that in such a self-gravitating plasma
faster than in a kinetic one. The stable solutions of the twGnhere exists a range of wave numbéssequivalently, wave-

models are quite different also: the fluid model supports Unfengthg, where dust-acoustic modes can hardly be excited.
damped short-wavelength dust-acoustic waves, but the ki-

netic model can crucially alter the conditions for the propa-

gation of the dust-acoustic waves. It is found that all stable ACKNOWLEDGMENTS
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