
PHYSICAL REVIEW E, VOLUME 63, 066406
Kinetic approach to low-frequency waves in dusty self-gravitating plasmas
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A kinetic model is derived for the propagation of low-frequency waves in a dusty plasma containing very
heavy dust particles, when the self-gravitational interaction due to these grains is included in the analysis.
Analytical expressions for the dispersion function are used to examine the instability and damping of the
modes. The stability regions of low-frequency waves are compared in the kinetic and the analogous hydrody-
namic models, showing that there are only slight differences. However, the kinetic analysis modifies the
growth rates of the Jeans instability and can considerably alter the conditions for the propagation of stable dust
modes.
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I. INTRODUCTION

Dust particles immersed in plasma and radiative envir
ments inevitably become electrically charged. Such mixtu
of electrons, ions, and charged dust grains distinguish th
selves from ordinary plasmas, because charged dust g
are much more than just an additional ionic species. On
the important novel features of dusty plasmas when co
pared with the usual multispecies electron-ion plasmas
that the dust particles can interact through both electric
gravitational forces. When self-gravitational interactions d
to the heavier dust component are included, dusty plas
are subject to a Jeans instability. This results in a signific
modification of collective modes and in new stability cond
tions.

The first and one of the most studied low-frequen
modes in dusty plasmas is the ‘‘dust-acoustic wave’’@1#,
which has been confirmed in recent laboratory experime
@2,3#. On the other hand, when self-gravitational effects
included self-consistently, new stable and unstable modifi
tions of this mode in self-gravitating plasmas are found.
particular, several authors have discussed new condition
the existence of dust-acoustic waves in self-gravitating p
mas @4–9#. For a further discussion of wave processes
such a medium, in general, we refer to recent books@10,11#.

Most work on low-frequency modes in dusty and se
gravitating plasmas was based on the hydrodynamic
proach that, generally speaking, breaks down at phase
locities small compared to the thermal velocities of t
particles and is clearly insufficient to describe the therm
influences on different kinds of waves. The most gene
model to study the effects associated with the thermal mo
of particles is the kinetic description, which is based on
statistical representation of the medium as a system of a l
number of particles.

The most important kinetic effect in plasmas is the co
sionless dissipation of wave energy, known as Landau da
ing, which is well studied for different types of waves in

*Permanent address: Institute of Radio Astronomy of Natio
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conventional electron-ion plasma@12,13#. Recently, a kinetic
model for the propagation of dust-acoustic modes in a du
plasma was treated@14,15#, where the effect of dust size
distributions on the propagation and damping of the lo
frequency waves was considered.

The kinetic description of a neutral gravitating mediu
leads to some new phenomena compared to the fluid mo
In both cases there is instability if the wave number
smaller than the Jeans wave number. However, the osc
tions in these two models are quite different: the fluid mo
supports short-wavelength sound waves and the kinetic
does not. The latter results in a strong damping effect
short-wavelength sound perturbations@16,17#.

Since the dust particles of a self-gravitating plasma int
act through both electric and gravitational forces, a kine
model for the collective effects will eventually account f
the specific features of a plasma and a neutral gravita
medium. Hence it is physically relevant to investigate lo
frequency modes in such a complex plasma system in a
netic description.

In the present paper we study the peculiarities of
propagation of eigenmodes in self-gravitating plasmas,
more specifically, the growth and damping rates of the ins
bilities of dust-acoustic modes and dust Langmuir mod
Besides purely kinetic effects such as Landau damping, th
is another kind of damping mechanism for the dust mod
namely, the charge-fluctuation damping due to variable d
charges@18,19#. The first analysis of the charge-fluctuatio
problem in dense self-gravitating plasmas has been given
Rao and Verheest@20#, and shows that there are order-o
magnitude differences between the characteristic times of
wave processes on the one hand and the charging time
the other. The charging times are short enough and he
dust grains have sufficient time to achieve an average ch
on the collapse timescales. Therefore, when considerin
low-frequency regime in a self-gravitating plasma, we c
assume that grains have constant charges, thus omitting
simplicity a very weak damping due to charge variations

The plan of the paper is as follows. In Sec. II we deri
the general kinetic dispersion relation and consider the
stable solutions ~Jeans-like perturbations!. The plasma
modes are analyzed in Sec. III for various frequency
gimes. Finally, brief conclusions are given in Sec. IV.
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YAROSHENKO, JACOBS, AND VERHEEST PHYSICAL REVIEW E63 066406
II. KINETIC MODEL OF A DUSTY SELF-GRAVITATING
PLASMA

A. Kinetic equation

We consider low-frequency plasma waves in infinite, h
mogeneous, unmagnetized, and collisionless self-gravita
plasmas, which consist of warm electrons~with subscripte),
ions ~with subscripti ), and heavy charged grains of a sing
sort ~with subscriptd). All particle species will be describe
by a distribution functionf a ~with a5e,i ,d) in phase space
that satisfies the ordinary Vlasov equation

] f a

]t
1“•~vf a!1“v•F f aS qa

ma
E2“f D G50. ~1!

Here qa and ma denote the particle charges and mass
respectively,E denotes the electric field, andf denotes the
gravitational potential.

The self-consistent electric and gravitational fields can
found from the Poisson equations

¹2w52
1

«0
(
a

qana , ~2!

¹2f54pG(
a

mana , ~3!

wherew is the electric potential,G is the gravitational con-
stant, and

na5E f ad3v. ~4!

B. Dispersion relation

We now consider plasma waves, assuming all the exte
fields and average velocities of the particles to be zero in
unperturbed~equilibrium! state. Following the standard lin
earization procedure we obtain the perturbed distribut
functions

f a152
k•“v f a0

v2k•v F qa

ma
w1fG . ~5!

Here the values with subscript 0 refer to the zeroth-or
state, whereas first-order terms are indicated by a subscr
and are assumed to vary as exp(ik•r2 ivt).

Substituting the perturbed distribution function~5! into
the Poisson equations~2! and ~3!, we obtain two coupled
equations with respect to the electric and gravitational po
tials, viz.,

w«p1f
K

AG
50,

~6!
2wKAG1f«G50.

These involve a plasma dielectric constant
06640
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«p511
1

«0k2 (
a

qa
2

ma
I a , ~7!

its analog for a self-gravitating neutral medium

«G512
4pG

k2 (
a

maI a ~8!

and a coupling factor

K5A4pG

«0

1

k2 (
a

qaI a , ~9!

where

I a5E k•“v f a0

v2k•v
d3v. ~10!

The dispersion relation for the electrostatic waves in the
netic model of self-gravitating plasmas,

«~v,k!5«p1
K2

«G
50, ~11!

thus has the same structure as in a fluid approach@21#.
We now assume that the plasma particles are describe

a Maxwellian distribution function

f a05
na0

~pvTa
2 !3/2

expS 2
v2

vTa
2 D , ~12!

wherena0 is the equilibrium density,vTa5(2kBTa /ma)1/2

is the thermal velocity, andTa is the temperature of the
particles of typea. When f a0 is of this form, the integral
over all velocities in Eq.~10! can be calculated in rectangula
coordinates (vx ,vy ,vz), where thevx axis is chosen to lie in
the direction ofk. The integrals overvy andvz are simple,
using*2`

` exp(2v2/vTa
2 )dv5ApvTa , and Eq.~10! becomes

I a5
2na0k

ApvTa
3 E

2`

` vxexp~2vx
2/vTa

2 !

kvx2v
dvx . ~13!

C. Stable and unstable solutions

By analogy with the fluid case, we expect the bounda
between stable and unstable solutions to occur atv50. At
v50 the integral~13! is easily evaluated and we find

I a,cr5
2na0

vTa
2

. ~14!

Substituting Eq.~14! into Eqs.~7!–~9! and using Eq.~11!,
one can obtain the equation that determines the critical w
numberkcr , namely,

S 11
1

kcr
2 lD

2 D S 12
1

kcr
2 lJd

2 D 1
1

kcr
2 lDd

2
50. ~15!
6-2
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Here the characteristic Debye and Jeans lengths are g
through lDa

2 5«0kBTa /na0qa
2 and lJa

2 5kBTa/4pGna0ma
2 ,

respectively. When considering waves in a self-gravitatio
plasma, it is absolutely meaningless to take gravitational
teractions due to ions or electrons into account, which
indeed never done. Hence we neglect terms proportiona
lJe

21 and lJi
21 , which is equivalent to supposing tha

uqdu/md!uqi u/mi ,e/me . Electron and ion contributions ar
retained only via a global plasma Debye lengthlD , defined
throughlD

225lDe
221lDi

22 .
The critical wave number may be thus easily determin

as a positive root of the bi-quadratic equation~15!, which we
analyze below in two different regimes typical of low
frequency waves in dusty self-gravitating plasmas.

For the case ofkcr
2 lD

2 !1 ~the dust-acoustic regime!, the
critical wave number is determined by the expression

kcr
2 5

vJd
2

vda
2

1

11lDd
2 /lD

2
, ~16!

where vda5vpdlD is the dust-acoustic velocity,vpa

5(na0qa
2/«0ma)1/2 is the plasma frequency, andvJa

5(4pGna0ma)1/2 is the Jeans frequency. For cold dust, E
~16! simply reduces to the critical wave numberkcr for dust-
acoustic waves in the fluid description.

In the regime of the dust Langmuir waves, whenkcr
2 lD

2

@1, kcr is given by

kcr
2 5

2~vJd
2 2vpd

2 !

vTd
2

. ~17!

Pursuing the analogy with the fluid description of wave p
cesses in self-gravitating plasmas, we suspect that all pe
bations with wave numbersk,kcr will be unstable. To
check this, we setv5 ig, whereg is real and positive and
substitute this into Eq.~13!. Using the relation

E
0

`x2exp~2x2!

x21b2 dx5
1

2
$Ap2pb exp~b2!@12erf~b!#%,

~18!

where erf(b) denotes the error function, we find that

I a5
2na0

vTa
2

[12Apbaexp~ba
2 !$~12erf~ba!%#[

2na0

vTa
2

Fa ,

~19!

whereba5g/kvTa andFa is short hand for the expressio
between square brackets. Combining this with Eqs.~7!–~9!
and ~11!, we obtain the general dispersion law as

S 11
Fe

k2lDe
2

1
Fi

k2lDi
2 D S 12

Fd

k2lJd
2 D 1

Fd

k2lDd
2

50. ~20!

To understand modifications of dispersion properties due
the kinetic description, let us start from the dust Langm
waves and consider Eq.~20! in the casek2lD

2 @1. Relation
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~20! is plotted in Fig. 1 for the dimensionless variablesy
5v2/(vJd

2 2vpd
2 ) andx5k2/kcr

2 , along with the dispersion re
lation for the fluid model, which corresponds toy5211x.
As could be expected, the perturbations indeed grow,k
,kcr , although the growth rates generally are quite differe
in both plasma models. This result is consistent with
kinetic analysis of a self-gravitating neutral system@17#,
since the Jeans frequency enters the equations as part o
effective Jeans frequency throughvJ,eff

2 5vJd
2 2vpd

2 .
Next we consider the approximate solution of Eq.~20! in

the regime of the dust-acoustic waves (kcr
2 lD

2 !1), whenk
→kcr20. Introducing dimensionless variablesy5v2/vJd

2

and x5k2/kcr
2 , we can expand the functionsFa(A2y/2x)

for small arguments, i.e.,y/x!1. Then one can obtain th
simplified dispersion relation asy52x(12x)2/p. Figure 2
demonstrates the difference in the growth rates of the d
acoustic perturbations in the kinetic and fluid approache
the vicinity of k→kcr20.

Thus, although both the fluid and kinetic models are u
stable if k,kcr , the growth rates are quite different: th
perturbations in the fluid description grow faster than in t
kinetic one.

III. ELECTROSTATIC WAVES IN SELF-GRAVITATING
PLASMAS

Here we analyze the stable modes in a self-gravitat
plasma whenk.kcr . To evaluate the integral~10! for the
Maxwellian distribution~12!, we must compute the integra
over v according to the well-known ‘‘Landau bypass rule’
the contour of integration in the complexv plane bypasses
the pole singularity atv5kv from below. Then one can ge

FIG. 1. Kinetic dispersion relation~20! ~full curve! and fluid
dispersion~dotted curve! in the casek2lD

2 @1. Only the unstable
branch is plotted.
6-3
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I a5
2na0

vTa
2 @11 iApzaW~za!#, ~21!

where za5v/kvTa is a dimensionless frequency andW is
the Kramp function@22#

W~z!5exp~2z2!F11
2i

Ap
E

0

z

expx2dxG . ~22!

Note that another function is often used, which is related
Eq. ~22! by Z(z)5 iApzW(z) and is tabulated@23#.

The final dispersion equation~11! can be written in the
form

«~v,k!511(
a

11 iApzaW~za!

k2lDa
2

1

F(
a

11 iApzaW~za!

k2lDalJa
G 2

12(
a

11 iApzaW~za!

k2lJa
2

50, ~23!

which we analyze below in different frequency regimes.
The analytic analysis of plasma mode propagation

quires asymptotic expansions of the dispersion funct
W(z) for either small or large arguments. We will use t
following approximations@22#:

~a! uzu@1, Re$z%@Im$z%, Im$z%,0,

W~z!5
i

Apz
S 11

1

2z2
1

3

4z4
1 . . . D 1exp~2z2! ~24!

FIG. 2. As in Fig. 1, but fork2lD
2 !1.
06640
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and
~b! uzu!1,

W~z!511
2iz

Ap
1•••. ~25!

The wave frequencyv and dispersion relation«(v,k) are
then written in terms of real and imaginary partsv5v0
1 ig and «(v,k)5« r1 i« i , where we assume thatuv0u
@ugu and u« r u@u« i u.

We consider the low-frequency case, when the wave
quency satisfies the inequalitykvTd!v!kvTi ,kvTe and the
dust particles are involved in the wave processes. So
qualitatively different solutions are possible, depending
the relative magnitude ofvpd

2 , vJd
2 , andk2lD

2 . To discuss
the low-frequency waves in such plasmas, we introduc
parameter

D5
vJd

2

vpd
2 S 11

1

k2lD
2 D , ~26!

which measures the influence of self-gravitation in a m
dium. As can be seen, the boundary between stable and
stable solutions occurs in the vicinity ofD51, when the
gravitational and electric interaction forces balance. The d
persion relation~23!, still assumingv@kvTd , is now of the
form

11
1

k2lD
2 F11

ivAp

k~11d! S 1

vTi
1

d

vTe
D S 11

vJd
2

v2 D G2~12D!

3Fvpd
2

v2 S 11
3k2vTd

2

2v2 D 2 iAp
v

kvTd

1

k2lDd
2

3expS 2
v2

k2vTd
2 D G50, ~27!

where a parameterd5lDi
2 /lDe

2 measures the influence of th
electron component on the dust modes. If the dust grains
negatively charged, plasma electrons are absorbed by
charged dust and hencene0 decreases, implying a decrea
of d to a valued,1 or even tod!1. The latter correspond
to a situation where almost all plasma electrons have b
absorbed by the dust grains, and this simplified model o
dusty plasma merely consisting of ions and charged grain
known and discussed in the literature@24#. The opposite oc-
curs in the specific case of positively charged grains in
isothermal plasma (Te.Ti), giving d.1. The general dis-
persion relation~27! can be adapted to both cases.

As the imaginary part of Eq.~27! is small compared to the
real part, we can easily apply the Taylor expansion of
dispersion relation aroundg50, which yields
6-4
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v0
25

vpd
2 ~12D!

11
1

k2lD
2

F 11

3k2lDd
2 S 11

1

k2lD
2 D

12D
G ~28!

and

g52« i~v0!F]« r

]v Uv5v0G21

52
Apv0

4

2k3lD
2 vpd

2 ~12D!
F 1

vTi
1

d

vTe

~12D!~11d!
1

~12D!b

vTd

3expS 2
v0

2

k2vTd
2 D G , ~29!

where the parameterb5lD
2 /lDd

2 is introduced. It follows
immediately that the above mentioned conditionv@kvTd is
satisfied only if

k2lDd
2 1

1

b
!u12Du. ~30!

This means that weakly damped low-frequency modes w
frequencies given through Eq.~28! can only exist in the
long-wavelength range (k2lDd

2 !u12Du) and in dusty plas-
mas for which 1!bu12Du. Compared to the conditions fo
low-frequency modes in the usual dusty plasmas, both
these inequalities become stricter as self-gravitation is ta
into account. As for the wavelength of the low-frequen
perturbations, it can be either shorter or larger than
plasma Debye length.

A. Analog of dust-acoustic modes

In the long-wavelength limit, whenk2lD
2 !1, the disper-

sion law ~28! corresponds to the analog of the dust-acou
mode in dusty self-gravitating plasmas. The resulting f
quency and damping decrement are given by

v0
2.k2vda

2 F ~12D!~12k2lD
2 !1

3

bG ~31!

and

g52Ap

8
kvdaH S vpd

vpi
1

vpd

vpe
d3/2D ~11d!23/2

1~12D!2b3/2expF2
31~12D!b

2 G J . ~32!

Here the parameterD has been redefined asD.vJd
2 /k2vda

2 .
In the absence of self-gravitation (D50), Eqs.~31! and~32!
simply reduce to the dispersion relations obtained in the
06640
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netic approach for dust-acoustic waves, and thus Eqs.~31!
and ~32! in some sense generalize earlier results@14#.

Assuming D,1, we consider the influence of sel
gravitation on the dust-acoustic modes. First of all,
should note that dust-acoustic waves usually are almost n
dispersive in the long-wavelength regime (k2lD

2 !1). In-
deed, the phase velocity of long-wavelength disturbance
vph5vpdlD . In contrast to that, in a self-gravitating plasm
vph5vpdlD(12vJd

2 /k2vda
2 )1/2, and this mode demonstrate

the dispersion, which is completely specified by the se
gravitational effects. Furthermore, a peculiarity of the du
acoustic wave in a self-gravitating plasma is its damp
@Eq. ~32!#. Since the dust species are sufficiently heavy, i
reasonable to assume that the second term in the curly br
ets of Eq.~32! makes the main contribution to the dampin
rate, and the latter is almost completely controlled by se
gravitation. But this has to be treated with some care, w
dealing with large values of the parameterb. For very large
b, the exponential term in Eq.~32! is reduced and conse
quently, the influence of self-gravitation on the damping r
diminishes. Thus, when studying self-gravitational effe
we have to restrict our analysis to those values ofb for
which the second term of Eq.~32! prevails. This is equiva-
lent to saying that inside the curly brackets the term
b3/2exp(2b/2) contributes significantly compared t
vpd /vpi1vpdd

3/2/vpe . In addition,vpd should exceedvJd
but not to a great extent, lest the self-gravitational effe
again become insignificant. With regard to the possible
rameters of self-gravitating plasmas, this leads quite real
cally to assume thatb remains smaller than 50.

Figure 3 illustrates the typical evolution of the wave de
rement in such self-gravitational plasmas: the ratiougu/kvda
for b520 is shown as a function ofD. The decrement rate
for a usual dust-acoustic wave in dusty plasmas without s
gravitation corresponds to a valueugu/kvda for D50. As one

FIG. 3. Effect of self-gravitation on Landau damping of th
dust-acoustic wave forb520.
6-5
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can see from Fig. 3, the curve demonstrates a consider
growth of the damping effect, and the influence of se
gravitation increases especially in the vicinity ofD→1. Then
the damping drops to zero forD51, whenvJd

2 5k2vda
2 .

From a physical point of view, the explanation of th
rather high damping rate forD→1 is quite simple. The
damping rate of a wave is proportional to the difference
numbers of slow and fast captured particles, which is de
mined by2(d fd0 /dv)v5v0 /k . This means that in the case o
a Maxwellian distribution~12! the number of dust particle
that can effectively interact with the dust-acoustic wave
given by

N;~12D!1/2expF2
1

2
~12D!bG . ~33!

When the self-gravitational influence increases (D→1), the
number of resonant dust particlesN increases also, achievin
a maximum atDm5121/b. Hence in the vicinity ofD→1
the number of resonant particles becomes so large tha
damping rate grows crucially, far exceeding the Land
damping rate for usual dust-acoustic waves. Note also
the picture of absorption of the dust-acoustic waves by re
nant dust particles refers to the case when Eq.~30! is satis-
fied. This means that the current considerations are not v
in the immediate vicinity ofD;Dm and only provide a
physical idea of the anomalous damping rate due to s
gravitational effects.

The appearance of a large damping rate with increasinD
may be interpreted in a different way. Pursuing the analo
with the fluid model, we use the critical Jeans wave num
~16!, which can be estimated askcr.vJd /vda , and consider
the dimensionless damping rateugu/vJd defined by Eq.~32!
as a function ofk/kcr in the rangek/kcr.1. The correspond-
ing dependence is shown in Fig. 4 for differentb. As ex-

FIG. 4. Landau damping rate vsk/kcr for the analog of the
dust-acoustic wave in self-gravitating plasmas.
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pected, the perturbations damp strongly whenk→kcr10.
Clearly, a region of strong damping is determined by t
parameters of the plasma, in particular byb. With an in-
crease ofb, the influence of self-gravitation is reduced an
the curve approaches the usual damping rate for d
acoustic waves.

Thus, in contrast to the damping rate of a usual du
acoustic wave, for which the damping rate is a linear fun
tion of the wave number, i.e.,ugu;kvda , the latter can be
modified considerably in a self-gravitating plasma. In p
ticular, if the valueb is typically no more than 50, there
always exist disturbances with wave numbersk;vJd(1
11/2b)/vda , which are subjected to strong attenuation d
to self-gravitational effects. This means that in a mediu
with specified values of the dust plasma (vpd) and Jeans
(vJd) frequencies and 1,b,50, dust-acoustic waves with
k;vJd(111/2b)/vda can hardly propagate.

Therefore the resemblance of the fluid and the kine
model of dust sound waves in dusty self-gravitating plasm
breaks down at larger wave numbersk.kcr . Here the fluid
dispersion equation supports modes that can simply be
garded as undamped gravity-modified dust-acoustic wa
The kinetic analysis of self-gravitating plasmas is more co
plicated. We found that all dust-acoustic perturbations
self-gravitating plasmas with wave numbersk.kcr are
damped due to the collisionless Landau damping, part
larly in the vicinity of k→kcr10.

B. Dust Langmuir waves

For sufficiently short wavelengths, whenk2lD
2 @1 but

k2lDd
2 !u12Du, the spectrum is given by

v0
2.vpd

2 ~12D13k2lDd
2 !, ~34!

where the parameterD is defined asD5vJd
2 /vpd

2 . If D,1
this mode is attenuated, with damping rate

g.2Ap

8

vpd

k3lD
3 H S vpd

vpi
1

vpd

vpe
d3/2D ~11d!23/2

1~12D!2b3/2expF2
3

2
2

~12D!vpd
2

k2vTd
2 G J . ~35!

Equations~34! and~35! reduce to the dispersion relations fo
the usual Langmuir modes~e.g. ion Langmuir waves in an
electron-ion plasma!, however, the role of the plasma fre
quency is played by the effective plasma frequency of
dust particles defined throughvp,eff

2 5vpd
2 2vJd

2 . The spec-
trum of plasma waves is quite well known@12,13# and here
we shall not discuss it further. We just note that disturban
of that mode can be subjected to the same strong dampin
dust-acoustic modes in self-gravitating plasmas ifD→1, i.e.,
vpd→vJd .

IV. RESULTS

To summarize, the stability of low-frequency waves
homogeneous self-gravitating plasmas in a kinetic desc
6-6
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tion is closely related to the stability of the analogous hyd
dynamic model: in both cases there is instability if and o
if the wave number of the disturbances is less than a crit
value. However, the growth rates of the Jeans instability
quite different: the perturbations in a fluid description gro
faster than in a kinetic one. The stable solutions of the t
models are quite different also: the fluid model supports
damped short-wavelength dust-acoustic waves, but the
netic model can crucially alter the conditions for the prop
gation of the dust-acoustic waves. It is found that all sta
dust-acoustic perturbations in self-gravitating plasmas
damped due to the collisionless Landau damping. The la
strongly depends on the values of the plasma parame
especially onb. If this is large enough (b.50), the damping
,
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rate differs only slightly from the damping rate for the usu
dust-acoustic waves. In contrast to this, a self-gravitat
plasma with 1,b,50 shows a considerable growth of th
damping effect, particularly for wave numbers near the cr
cal values. This means that in such a self-gravitating plas
there exists a range of wave numbers~or equivalently, wave-
lengths!, where dust-acoustic modes can hardly be excite
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